Electrical Systems, Commercial Building Design

AREN 4570, Spring 2013

5/2/2013
Janay Griego, Matthew Kincaid, Travis Marcilla

Executive Summary

The following 21,000sqft office building utilizes a radial distribution system which consists of a $480 \mathrm{Y} / 277 \mathrm{~V}$ lighting panel, a $208 \mathrm{Y} / 120 \mathrm{~V}$ power panel, and a $480 \mathrm{Y} / 277 \mathrm{~V}$ motor control center. $1^{\prime \prime} \mathrm{C}$ 4\#2THW (cu) conductors protected by a 100 A breaker, supply two types of lights and occupancy sensors. There are two circuits per floor with a centrally located panel board in the utility room on the second floor. The down lights have a battery option in order to double as egress lighting in a power outage. Occupancy sensors are used to help save energy. The power panel is fed by a 1 "C-4\#8 THW (cu) through a 100A breaker and supplies 36 individual receptacle branches. Emergency exit signs with a backup battery are hard wired into the same circuits as nearby outlets. Care has been taken to leave plenty of room for large and potentially continuous loads that may be a result of multiple computers and other office gadgets. Each floor has a plug wired for a refrigerator and circuit available for a small appliance load.

The motor control center is fed by 2 " $\mathrm{C}-3 \# 3 / 0 \mathrm{THW}$ (cu) protected by a 300 A breaker. There are 13 individual motor loads. The control center is located in the mechanical and electrical room on the first floor and next to the $9^{\prime} 6^{\prime \prime} \times 4^{\prime} 6^{\prime \prime} \times 7^{\prime} 6^{\prime \prime}$ unit substation. The 225 kV transformer that feeds the power panel is directly below the power panels in the same room. The chiller is the largest motor at 30hp and is selected from the line of Carrier products.

The second floor of the building is home to the power panels but the chiller, boiler, and the hot and chilled water pumps. These feed the AHU that is located directly above on the third floor. The goals project goals established by the design team include safety, flexibility, minimal energy demand, low voltage drops, and minimal equipment sizing to save money.

Table of Contents

Executive Summary. 2
Table of Contents 3
NEC Compliance 4
Lighting Panel. 6
Power Panel. 8
Emergency Loads 10
Motor Control 11
Motor Branch Circuits 14
Unit Substation 17
Voltage Drop 19
Short Circuit. 21
Wire Sizes 23
References. 25
Appendix A: Drawings 26
Appendix B: Cut Sheets 44

NEC Code Compliance Summary

Table 1: Reference to Electrical Systems for Buildings.	
Textbook Table	Description
14.1	Horsepower ratings of low-voltage starters
14.3	Space requirements for motor control centers
8.2	Frame sizes and typical ratings for low-voltage power circuit breakers
Fig 15.8	Modular stacking arrangements for low-voltage circuit breaker switchboards
13.4	Standard Ratings of Three-Pole Motor Circuit Switches
15.1	Ratings and Typical Cubicle Dimensions for Dry-Type Transformers Used with Unit Substations.
7.1	Ratings and Clearing Time Limits for Low-Voltage Fuses up to 600 Amperes

Table 2: Tables Referenced in NEC		
Table	Description	Text Book Equivalent
430.52	Maximum Rating or Setting of Motor Branch-Circuit and Ground-Fault Protective Devices.	13.3
430.72	Maximum Rating of Overcurrent Protective Device in Amperes	
430.250	Full-Load Current in Amperes, Direct-Current Motors	13.2
220.44	Demand factors for Non-Dwelling Receptacle Loads	12.3
220.122	Minimum Size Equipment Grounding Conductors for Grounding Raceway and Equipment.	10.2
310.15 (B) (16)	Allowable Ampacities of Insulated Conductors	11.1
Annex C	Maximum Number of Conductors in Trade Size of Conduit or Tubing.	11.6
250.66	Grounding Electrode Conductor for Alternating Current Systems	10.1
Chap 9, T9	Alternating-Current Resistance and Reactance for 600-Volt Cables.	16.1

Table 3: Articles Referenced in NEC	
Article	Summary
430.6	Describes how to size the conductors of the equipment
430.32	Any continuous motor that is more than 1hp shall have overcurrent protection.
430.37	All 3-Phase motors must be provided with overload units.
430.39	Motor controllers need to be installed that is capable of interrupting a stalled rotor current of the motor.
450.42	The vault that holds the transformer shall provide 3 hour fire resistance.
450.43	doorways shall also be fire protected
430.40	If there is a maximum short circuit then there is a maximum limit on the fuse or circuit breaker.
430.52	The motor branch-circuit short-circuits and ground-fault protective device shall be capable of carrying the starting current in the motor, and much more.
430.72	Describes overcurrent protection for motor control circuits.
220.14 (I)	Receptacle demand loads.
220.18 (A)	Continuous motors are 125\% DF.
250.122	Size equipment grounding
110.26	Defines Space Requirements around Unit Substation.
700.12 (F)	Lights with rechargeable batteries are required

Lighting Types

Throughout the building, three different types of luminaires will be used. Lighting for the exterior of the building will be provided by exterior wall luminaire hood downlights. These luminaires are only located on the outer perimeter. The layout of this specific lighting can be seen on CAD Sheet E3.1. As for the main lighting for all office spaces in the building, troffers are used on each level. Spaces where troffers are located include utility rooms, open office areas, the cafeteria, and storage rooms. For conference rooms and private offices, a more ambient lighting fixture was chosen. For the ambient lighting, commercial downlighting is implemented. For energy savings, occupancy sensors are also installed. These sensors can be set to a specified time and will automatically turn off the lights if there is no movement in the room/space.

Luminaire Description						
Fixture	Model \#	Manufacturer	Wattage	Voltage	Quantity	Notes
$\begin{array}{c}\text { Exterior } \\ \text { Wall } \\ \text { Lighting }\end{array}$	$\begin{array}{c}\text { 697-WP- } \\ \text { MH/1/100- } \\ \text { 277V-BK-C }\end{array}$	Shaper	100	277	10	$\begin{array}{c}\text { Exterior lighting } \\ \text { near entrances }\end{array}$
Troffers	$\begin{array}{c}\text { 2-VRM-S-2- } \\ \text { 54T5-PA3- } \\ 75-277- \\ \text { LEOC8-GL }\end{array}$	ISO	122	277	96	$\begin{array}{c}\text { All troffers per } \\ \text { floor are wired } \\ \text { together and } \\ \text { connected to a } \\ \text { single fuse on the } \\ \text { 2d }\end{array}$
floor.						

Table 4: Shows the purpose and use for each luminaire in various spaces of the commercial building.

Lighting Loads

Fixture	\# of Fixtures	Watts per Fixture	PF	PT per Fixture, VA	Connected Load, kVA	Demand Load, kVA
Exterior Wall Lighting	10	100	0.98	102.04	1.02	1.28
Troffer	96	122	0.98	124.49	11.95	14.94
Down Light	182	45	0.98	45.92	8.36	10.45
Occupancy Sensor	32	0.75	1	0.75	0.02	0.03
TOTAL:						
$\mathbf{2 1 . 3 5}$	$\mathbf{2 6 . 6 9}$					

Table 5: The amount of each fixture was totaled. The connected loads and demand loads are calculated and displayed. In a commercial building, a demand factor of 1.25 should be applied to all lights.

Equations/Sample Calculations using Exterior Wall Lighting:

$$
\begin{gathered}
\text { Total Power per Fixture, } P_{T} / \text { fixture }=\frac{\left(\frac{W}{\text { Fixture }}\right)}{P F}=\frac{100}{0.98}=\mathbf{1 0 2 . 0 4 ~ V A} \\
\text { Connected Load }=\frac{(\# \text { of Fixtures })\left(\frac{P_{T}}{\text { Fixture }}\right)}{1000 \mathrm{VA}} * k V A=\frac{(10 \text { Fixture })(102.04 \mathrm{VA})}{1000 \mathrm{VA}}=\mathbf{1 . 0 2} \mathbf{~ k V A}
\end{gathered}
$$

$$
\text { Demand Load }=1.25 * \text { Connected Load }=1.25 * 1.02 \mathrm{kVA}=\mathbf{1 . 2 8} \mathbf{k V A}
$$

Lighting Panel: Lighting Branch Circuits

All lighting used is fluorescent lighting which requires a smaller amount of power. Because of this, a total of six branch circuits are needed. The load for branches L1-L6 are shown below. The total load should add up to the already calculated connected load and demand load shown above in Table 5.

Branch Circuit	Troffers	Exterior Lights	Down Lights	Occupancy Sensor	Connected Load, kVA	Demand Load, kVA	Current, Amps
L1	28	10	0	4	4.51	5.64	20.35
L2	0	0	58	6	2.67	3.33	12.04
L3	34	0	0	4	4.24	5.29	19.11
L4	0	0	62	7	2.85	3.57	12.87
L5	34	0	0	4	4.24	5.29	19.11
L6	0	0	62	$\mathbf{7}$	2.85	3.57	12.87
				TOTAL:	$\mathbf{2 1 . 3 5}$	$\mathbf{2 6 . 6 9}$	$\mathbf{9 6 . 3 6}$

Table 6: Shows the load associated with each branch circuit in the lighting panel based on the luminaire ratings for each fixture.

POWER PANEL LOADS				
Circuit	Receptacles*	Exit Signs**	Connected Load, kVA	Current, Amps
1	8	0	1.44	12
2	8	0	1.44	12
3	7	0	1.26	10.5
4	7	0	1.26	10.5
5	10	0	1.8	15
6	7	2	1.269	10.575
7	4	3	0.7335	6.1125
8	8	0	1.44	12
9	1	0	0.18	1.5
10	2	0	0.36	3
11	10	0	1.8	15
12	8	0	1.44	12
13	8	0	1.44	12
14	8	0	1.44	12
15	8	0	1.44	12
16	9	0	1.62	13.5
17	6	1	1.0845	9.0375
18	9	0	1.62	13.5
19	10	0	1.8	15
20	9	2	1.629	13.575
21	1	0	0.18	1.5
22	2	0	0.36	3
23	8	0	1.44	12
24	6	1	1.0845	9.0375
25	8	2	1.449	12.075
26	8	0	1.44	12
27	8	0	1.44	12
28	8	0	1.44	12
29	9	0	1.62	13.5
30	9	0	1.62	13.5
31	10	0	1.8	15
32	9	2	1.629	13.575
33	1	0	0.18	1.5
34	2	0	0.36	3
35	8	0	1.44	12
36	8	2	1.449	12.075
		SUM:	45.43	378.56

Table 7: Displays the load associated with each circuit in the power panel. The circuiting is laid out from the one-line diagrams provided.

Equations/Sample Calculations using Circuit 7:

*According to NEC Article 220.14(I), receptacle loads should be rated at 180 VA per receptacle.
**Referring to the cut sheets in the Appendix, exit signs are rated at 4.5 VA.

$$
\begin{array}{r}
\text { Connected Load }(\text { Circuit } 7)=\frac{(\# \text { of receptacles })(180 \mathrm{VA})+(\# \text { of exit signs })(4.5 \mathrm{VA})}{1000 \mathrm{VA}} * k \mathrm{VA} \\
=\frac{(4 \text { receptacles })(180 \mathrm{VA})+(3 \text { exit signs })(4.5 \mathrm{VA})}{1000 \mathrm{VA}}=\mathbf{0 . 7 3 3 5} \mathbf{~ k V A}
\end{array}
$$

Demand Load:

According to NEC Article 220.44, the calculated demand load for receptacle loads is found through the following equation:

$$
D L=100 \% * 10 k V A+50 \%(\text { remainder }-10 k V A)
$$

In this case, the connected load was calculated to be 45.43 kVA as shown in Table 7. Therefore:

$$
D L=(100 \% * 10 k V A+50 \%(45.43 k V A-10 k V A)=\mathbf{2 7 . 7 2} \mathbf{k V A}
$$

Emergency Load Description

In case of emergency, load requirements include egress lighting and exit signs. The egress lighting luminaires used are the same commercial Halo downlights used throughout the building as described in the lighting loads section. These luminaires have the option to change the ballast from a regular downlight to a downlight with a dual-tap emergency battery ballast with a remote test switch plate. This means that these luminaires are used daily for general lighting and are powered through the lighting panel and when an emergency occurs, the battery back-up will then be the source of power.

In addition to egress lighting, exit signs will also be needed for safety purposes. The exit signs chosen to be installed in the building will be energy efficient, long life LEDs. This specific type was chosen for its low operating costs and zero maintenance requirements.

Emergency Load Description						
Fixture	Model \#	Manufacturer	Wattage	Voltage	Quantity	Notes
Emergency Down Lights	PD8H142-E- 82H-1G-C- HB128APK	Halo	45	277	182	Includes battery backup ballast.
Exit Signs	ECHX-2-ST- A-WH	Sure-Lights	4.5	277	15	Ordered with arrows facing in the proper direction.

Table 8: Emergency loads are shown. Refer to the cut sheets in the Appendix for more information.

As mentioned above, the emergency downlights are a part of the lighting panel with battery back-up. The exit signs are connected to the power panel along with receptacle loads. See CAD sheets E4.1-E4.3 for exit sign layout and sheets E3.1-E3.3 for emergency downlighting layout.

Exit signs will have a very low load to the LED type exit sign. For load contribution to the power panel, see Table 7 in the Power Panel Design section.

According to NEC article 700.12(F), lights with rechargeable batteries are required. This complies with the ballast and luminaire type specified.

Motor \#	Motor	HP	\# of Motors	PF	Efficiency	Control	Total Power, P_{T}	Real Power, \mathbf{P}	Reactive Power, P_{x}	NEMA Starter*	SF/Motor **	$\begin{gathered} \text { SF } \\ \text { Total } \end{gathered}$
M1	AHU Supply Fan	25	1	0.9	0.92	RVNR	22.52	20.27	9.82	2	5	5
M2	AHU Return Fan	15	1	0.9	0.92	RVNR	13.51	12.16	5.89	2	5	5
M3	CHW Pump	20	1	0.9	0.92	RVNR	18.02	16.22	7.85	2	5	5
M4	Elevator	20	1	0.9	0.9	RVR	18.42	16.58	8.03	2	5	5
M5	AHU Exhaust Fan	10	1	0.9	0.92	RVNR	9.01	8.11	3.93	1	5	5
M6	HW Pump	10	1	0.9	0.92	RVNR	9.01	8.11	3.93	1	5	5
$\begin{aligned} & \hline \text { M7- } \\ & \text { M12 } \end{aligned}$	Exhaust Fans (6 Restrooms)	1	6	0.85	0.95	FVNR	0.92	0.79	0.49	00	1	6
M13	Chiller	30	1	0.9	0.9	RVNR	27.63	24.87	12.04	3	8	8
						Total	119.05	107.1	51.98			44

Table 9: A summary of all motor loads present in the commercial building.
*NEMA Starter based on three-phase, 460 V motor loads
*SF/motor based on fusible switch type
Equations/Sample Calculations using AHU Supply Fan, Motor 1:

$$
\begin{aligned}
& \text { Real Power, } P_{R}=\frac{P_{\text {mech }}}{\eta}=\frac{25 \mathrm{HP}}{0.92} * \frac{0.746 \mathrm{~kW}}{H P}=\mathbf{2 0 . 2 7} \mathbf{~ k W} \\
& \text { Total Power, } P_{T}=\frac{P_{R}}{P F}=\frac{20.27 \mathrm{~kW}}{0.9}=\mathbf{2 2 . 5 2 \mathrm { kVA }} \\
& \text { Reactive Power, } P_{X}=\sqrt{P_{T}^{2}-P_{R}^{2}}=\sqrt{22.52^{2}-20.27^{2}}=\mathbf{9 . 8 2} \mathbf{~ k v a r}
\end{aligned}
$$

Demand Load:

Connected Load $=119.05$ kVA from Table 9

To calculate the demand load, a demand factor of 1.25 must be applied to the power of the largest motor. In this case, the largest motor present is the chiller at 27.87 kVA .

$$
D L=1.25 * P_{T, \text { largest }}+\sum P_{T, \text { remainder }}=1.25 * 27.87 \mathrm{kVA}+91.42 \mathrm{kVA}=\mathbf{1 2 6 . 2 6} \mathbf{k V} \mathbf{A}
$$

Number of Modules:

Total Space Factor

- 44 SF for all motors
- 1 SF for main feeder

$$
\text { TOTAL SF = } 44+1=45 \text { SF }
$$

12 Space Factors are allowed in one module $\longrightarrow 45 \mathrm{SF} / 12=3.75 \longrightarrow 4$ modules are needed to house all motors Motor Control Center Horizontal and Vertical Bus Sizes:

Standard Horizontal Bus Sizes (continuous current rating)-
[600 A, 1000 A, 1200 A, 1600 A, 2000 A]

Horizontal Bus Size				
Motor	HP	I (Amps)	\# Motors	DL
AHU Supply Fan	25 HP	34	1	34
AHU Return Fan	15 HP	21	1	21
CHW Pump	20 HP	27	1	27
Elevator	20 HP	27	1	27
AHU Exhaust Fan	10 HP	14	1	14
HW Pump	10 HP	14	1	14
Exhaust Fans (6 Restrooms)	1 HP	1.8	6	10.8
Chiller	30 HP	40	1	40
			SUM:	187.8
			Horizontal Bus Size:	600 A

Table 10: Summary of calculations used to find the horizontal bus size of the motor control center.

Standard Vertical Bus Sizes-
[300 A, $450 \mathrm{~A}, 600 \mathrm{~A}$]

Sample Calculation using Module 1:
In order to find the standard vertical bus size, the demand load must be calculated.
Module 1 contains the AHU Supply Fan and AHU Return Fan only. A demand factor of 1.25 should be applied to the largest motor within the module.
DL for Module $1=1.25 * I_{\text {L,AHu Supply Fan }}+I_{L, \text { AHU Return Fan }}=1.25 * 34 \mathrm{~A}+21 \mathrm{~A}=63.5 \mathrm{~A}$
Therefore, a 300 A vertical bus size is selected for Module 1.

Vertical Bus Size	
Module 1	
DL (A)	63.5
VB 1 Size	300 A
Module 2	
DL (A)	64.35
VB 2 Size	300 A
Module 3	
DL (A)	57.2
VB 2 Size	300 A
Module 4	
DL (A)	31.5
VB 2 Size	300 A

Table 11: Summary of vertical bus sizes for all four modules in the motor control center

Horizontal and Vertical Bus Size Schematic
*For an overall layout of the MCC, see CAD Sheet E8.

Motor 1: AHU Supply Fan, RVNR							Motor 2: A	AHU Retu	urn Fan,	RVNR		
$25 \mathrm{HP}, 460 \mathrm{~V}, 3$ phase, SF $=10 \%$, Nontime-Delay Fuse Protection							$15 \mathrm{HP}, 460 \mathrm{~V}, 3$ phase, $\mathrm{SF}=10 \%$, Nontime-Delay Fuse Protection					
$\mathrm{L}_{\mathrm{L}}=$	34		NEC(430.250)				$\mathrm{I}_{\mathrm{L}}=$	21	A	NEC(430.250)		
STEP 2: PROTECTION DEVICE							STEP 2: PROTECTION DEVICE					
DF $=$	250\%		NEC(430.52)				DF $=$	= 250%		NEC(430.52)		
$\mathrm{I}_{\text {fuse }}=$	2.5* $\mathrm{l}_{\mathrm{L}}=$	85					$\mathrm{I}_{\text {fuse }}=$	$2.5 * I_{L}=$	52.5			
	Use 90 A	Fuse	T7.1					Use 60 AF	Fuse	T7. 1		
STEP 3: CONDUCTOR/CONDUIT							STEP 3: CONDUCTOR/CONDUIT					
${ }_{\text {cond }}=$	42.5		continuous				$\mathrm{I}_{\text {cond }}=$	26.25		continuous		
	\#8 THW (Cu)		NEC(310.15B)					\#12 THW ((Cu)	NEC(310.15B)		
	3/4"C-3\#	8 THW	NEC(AnnexC)					1/2"C-3\#1	\#12 THW	NEC(AnnexC)		
STEP 4: SWITCHES							STEP 4: SWITCHES					
Nontime-Delay							Nontime-Delay					
Fused Switch		100 A	T13.4				Fused Switch		60 A	T13.4		
Unfused Switch		60 A	T13.4				Unfused Switch		30 A	T13.4		
STEP 5: OVERLOAD PROTECTION							STEP 5: OVERLOAD PROTECTION					
${ }^{\text {FLCC }}=$	34						$\mathrm{I}_{\text {FLC }}=$		A			
$\mathrm{loc}^{\mathrm{c}}=$	39.1						$\mathrm{l}_{\mathrm{OC}}=$	24.15	A			
STEP 6							STEP 6					
Controller	RVNR						Controller	RVNR				

Motor 3: CHW Pump, RVNR							Motor 4: Ele	levator, R	RVR			
$20 \mathrm{HP}, 460 \mathrm{~V}, 3$ phase, $\mathrm{SF}=10 \%$, Nontime-Delay Fuse Protection							$20 \mathrm{HP}, 460 \mathrm{~V}, 3$ phase, SF $=10 \%$, Nontime-Delay Fuse Protection					
STEP 1: LOAD							STEP 1: LOAD					
$\mathrm{I}_{\mathrm{L}}=$	27		NEC(430.250)				$\mathrm{I}_{\mathrm{L}}=$	27	A	NEC(430.250)		
STEP 2: PROTECTION DEVICE							STEP 2: PROTECTION DEVICE					
DF $=$	250\%		NEC(430.52)				DF $=$	250\%		NEC(430.52)		
$\mathrm{I}_{\text {fuse }}=$	$2.5 *{ }_{l}=$	67.5					$\mathrm{I}_{\text {fuse }}=2$	$2.5 * \mathrm{I}_{\mathrm{L}}=$	67.5			
	Use 70A Fuse		T7.1					Use 70 A Fuse		T7.1		
STEP 3: CONDUCTOR/CONDUIT							STEP 3: CONDUCTOR/CONDUIT					
$\mathrm{I}_{\text {cond }}=$	33.75		continuous				$\mathrm{I}_{\text {cond }}=$	33.75		continuous		
	\#10 THW (Cu)		NEC(310.15B)					\#10 THW (Cu)	(Cu)	NEC(310.15B)		
	1/2"C-3\#10 THW		NEC(AnnexC)					1/2"C-3\#10 THW		NEC(AnnexC)		
STEP 4: SWITCHES							STEP 4: SWITCHES					
Nontime-Delay							Nontime-Delay					
Fused Switch		100 A	T13.4				Fused Switch		100 A	T13.4		
Unfused Switch		60 A	T13.4				Unfused Switch		60 A	T13.4		
STEP 5: OVERLOAD PROTECTION							STEP 5: OVERLOAD PROTECTION					
$\mathrm{I}_{\text {FLC }}=$	27						$\mathrm{I}_{\text {FLC }}=$		A			
$\mathrm{l}_{\text {oc }}=$	31.05	A					$\mathrm{l}_{\mathrm{oc}}=$	31.05	A			
STEP 6							STEP 6					
Controller	RVNR						Controller ${ }^{\text {P }}$	RVR				

*Upsized from a \#14 THW (Cu): \#12 THW (Cu) is the minimum required size for a motor branch circuit.

Sizing the Main MCC Feeder

CONDUCTOR/CONDUIT			
$\mathrm{I}_{\text {cond }}=$	$1.25^{*} \mathrm{I}_{\text {largest, } \mathrm{M}}+$ Sum $\mathrm{I}_{\mathrm{L}, \text { remainder }}$		
	197.8	A	
	\#3/0 THW (Cu)		NEC(310.15B)
	$\mathbf{2 " C}-\mathbf{3 \# 3 / 0}$ THW		NEC(AnnexC)

PROTECTION DEVICE: Circuit Breaker

$D F=$	250%		NEC(430.52)
$I_{P}=$	$\left.D^{*}\right\|_{\text {largest }, M}+$ Sum $\left(I_{L, \text { remainder }}\right)$		
	247.8	A	
	Use 300 A CB		T8.2

Demand Load Summary					
Load	Demand Load, kVA	Calculations Found in Section:			
Lighting	26.69	Lighting Panel Design			
Receptacles	27.72	Power Panel Design			
Motors	126.26	Motor Control Center Design			
SUM:				$\mathbf{1 8 0 . 6 7} \mathbf{~ k V A}$	

Table 12: Collected demand load summary.
To allow for flexibility in the design, the unit substation transformer is sized to be approximately 20% larger than the demand load requires.

Sizing the Transformer:

								Power Rating (kVA)	Height (in)	Width (in)	Depth (in)	Weight (ibs)	Average Impedance (\%Z)	Average X/R Ration
15.0	23.00	22.25	15.00	230	3.6	1.94								
30.0	23.00	22.25	15.00	285	6.4	0.92								
45.0	26.00	24.00	15.00	369	6.6	1.13								
75.0	30.00	30.00	20.00	590	5.7	1.38								
112.5	37.00	30.00	20.00	690	6.1	1.51								
150.0	42.00	36.00	24.00	1050	5.5	1.53								
225.0	42.00	36.00	24.00	1350	6.6	2.00								
300.0	48.00	48.00	29.50	2000	3.6	1.81								
500.0	58.00	48.00	29.50	2700	5.0	2.89								
750.0	90.00	72.00	54.00	5200	5.0	1.98								
1000.0	90.00	72.00	54.00	6000	5.8	2.38								

Table 13: Typical Ratings of Three-Phase General Purpose Transformers. See reference 1 for source citation.

FromTable X, a transformer that is approximately 20\% larger than a 180.67 kVA demand load is a $\mathbf{2 2 5}$ kVA transformer.

Unit Substation Dimensions	
Unit Substation Element	Sizing
Primary Switchgear Current	$I_{L, P}=\frac{P_{T}}{\sqrt{3}\left(E_{L, P)}\right.}=\frac{180.67 \mathrm{kVA}}{\sqrt{3}(13.8 \mathrm{kV})}=7.56 \mathrm{~A}$ Use low current: 600 A Size: W = 36"
Transformer	Use 15 kV, 225 kVA Size: $\mathbf{T 1 5 . 5} \mathbf{- H}=\mathbf{9 0 \prime \prime}, \mathrm{W}=42 \prime$, $\mathrm{D}=54$ "
Main Secondary Current	$\begin{gathered} I_{L, S}=\frac{P_{T}}{\sqrt{3}\left(E_{L, S}\right)}=\frac{180.67 \mathrm{kVA}}{\sqrt{3}(0.48 \mathrm{kV})}=217.31 \mathrm{~A} \\ I_{C B}=1.25 * I_{L, S}=1.25 * 217.31 \mathrm{~A}=271.64 \mathrm{~A} \\ \quad \text { Frame Size: T8.2-600 AF/3P } \end{gathered}$

	Size: Fig15.8 - Unit 2 $\mathbf{W}=\mathbf{1 8 \prime \prime}$
	Check: $480 \mathrm{~V} \mathrm{I}_{\mathrm{SC}}=30,000 \mathrm{~A} \rightarrow$ OK (see Short Circuit
calculations)	

Table 14: A summary of calculations showing the process of finding the final dimensions for the unit substation.

The layout of the unit substation can be found on CAD sheet E7.

Electrical Room Substation Layout

The unit substation must have at least a six foot clearance on all sides from the substation to the room walls. This is a general rule and is done for safety purposes. A schematic of the minimum dimensions is shown below in Figure 1. The schematic is solely for illustration purposes and is not to scale.

Figure 1: Minimum dimensions for electrical room size housing the unit substation.
According to Table 14 and Figure 1, the electrical room must be a minimum of $21.5^{\prime} \times 16.5^{\prime}$. Looking at CAD sheet E5.1, the drawing shows the placement of the electrical room and unit substation. The actual dimensions of the room are $24.83^{\prime} \times 26.33^{\prime}$ and the substation is a minimum of 6^{\prime} away from any wall which satisfies the safety requirements.

Voltage Drop Analysis

Feeder and branch circuit wires were sized to provide less than 3\% voltage drop for branch circuits and 2\% for feeders. This design criterion was easily met due to the small nature of the building, as well as the centrally located lighting and power panels. The tables below show the process used to estimate voltage drop, based on per length voltage drop values obtained courtesy of Canada Wire and Cable Limited.

Subfeeder Voltage Drop Analysis							
	Connected Current	Length (Ft.)	Thousand Amp-Ft	VD/1000 Amp-ft	Max VD	Voltage Drop	\% VD
Motor Sub	143.195	10	1.431949	0.11	8.31	0.158	0.033%
Lighting Sub	24.979	20	0.499585	0.485	8.31	0.254	0.053%
Primary Power Sub	54.641	10	0.546408	0.462	8.31	0.252	0.053%
Secondary Power Sub	126.094	30	3.782824	0.699	3.6	2.644	0.551%
Main Feeder	252.564	5	1.262822	0.07	8.31	0.089	0.019%

Table 15: Voltage Drop Analysis for Each Subfeeder

Lighting Panel Voltage Drop Analysis					
	Connected Current (Amps)	Max Length (Ft.)	Thousand Amp-Ft	Voltage Drop	\% VD for \#10 wire
L1	17.86	135	2.41	2.89	1.04%
L2	9.63	85	1.02	1.23	0.44%
L3	15.29	125	2.39	2.87	1.04%
			75	0.97	1.16
L4	10.30	15.29	135	2.58	3.10
L5	10.30	85	1.09	1.31	0.42%
L6				1.12%	

Table 16: Voltage Drop Analysis for Lighting Panel

Power Panel Voltage Drop Analysis					
Circuit	Connected Current (Amps)	Max Length (Ft.)	Thousand AmpFt	Voltage Drop	\% VD for \#12 wire
1	12.00	110	1.32	2.53	2.11\%
2	12.00	120	1.44	2.76	2.30\%
3	10.50	132	1.39	2.66	2.21\%
4	10.50	120	1.26	2.42	2.01\%
5	15.00	90	1.35	2.59	2.16\%
6	10.58	52	0.55	1.05	0.88\%
7	6.11	88	0.54	1.03	0.86\%
8	12.00	88	1.06	2.02	1.69\%
9	1.50	55	0.08	0.16	0.13\%
10	3.00	67	0.20	0.39	0.32\%
11	15.00	60	0.90	1.73	1.44\%
12	12.00	47	0.56	1.08	0.90\%
13	12.00	105	1.26	2.42	2.01\%
14	12.00	117	1.40	2.69	2.24\%
15	12.00	95	1.14	2.19	1.82\%
16	13.50	125	1.69	3.23	2.70\%
17	9.04	25	0.23	0.43	0.36\%
18	13.50	80	1.08	2.07	1.73\%
19	15.00	40	0.60	1.15	0.96\%
20	13.58	81	1.10	2.11	1.76\%
21	1.50	24	0.04	0.07	0.06\%
22	3.00	24	0.07	0.14	0.12\%
23	12.00	30	0.36	0.69	0.58\%
24	9.04	10	0.09	0.17	0.14\%
25	12.08	24	0.29	0.56	0.46\%
26	12.00	85	1.02	1.96	1.63\%
27	12.00	90	1.08	2.07	1.73\%
28	12.00	80	0.96	1.84	1.53\%
29	13.50	120	1.62	3.11	2.59\%
30	13.50	70	0.95	1.81	1.51\%
31	15.00	55	0.83	1.58	1.32\%
32	13.58	84	1.14	2.19	1.82\%
33	1.50	35	0.05	0.10	0.08\%
34	3.00	35	0.11	0.20	0.17\%
35	12.00	42	0.50	0.97	0.81\%
36	12.08	90	1.09	2.08	1.74\%

Table 17: Voltage Drop Analysis for Power Panel

Short Circuit Calculations Procedure

The short Circuit current at the main secondary feeder (point A) was calculated as follows.

Base kVA=225

Voltage $($ line to line $)=480 \mathrm{~V}$
$I_{s}=\frac{225}{\sqrt{3} * .48}=270.6329 \mathrm{~A}$
$Z_{\text {utility }}=0$ (Conservative Assumption)
$Z_{\text {transformer }}=5.75 \%$
$I_{T}=\frac{1.0}{.0575}=17.3913$ P.U.
$I_{T}=17.3913 \times 271 A=4706.6598 A$
$I_{\text {motor }}=4 \times 271 A=1082.53 A$
$I_{\mathrm{sc}, A}=5789.1916 A_{\mathrm{sym}}$

This was used as the basis to calculate the short circuit current at each of the subfeeders. The available fault current at B is calculated below as an example.
$I_{\mathrm{sc}, A}=5789.1916 A_{\mathrm{sym}}$
$I_{\mathrm{sc}, A}=\frac{5789.1916}{271}=21.3955 P . U$.
$Z_{\text {sys }}=\frac{1}{21.3955}=.0467$
Assume $x_{\frac{\text { system }}{R_{\text {sysem }}}}=4 \rightarrow \theta=76$
$R_{\text {sys }}=Z_{\text {sys }} * \cos (76)=.01298 P . U$.
$X_{\text {sys }}=Z_{\text {sys }} * \sin (76)=.0453 P . U$.

Per unit resistance of feeder,
$R_{\mathrm{ac}}=.1 \Omega / 1000 \mathrm{ft}$
$X_{\mathrm{ac}}=.054 \Omega / 1000 \mathrm{ft}$

Base Impeadence $=\frac{277}{271}=1.022 \Omega$
$R_{F}=\frac{.002}{1.022}=.00196 P . U$.
$X_{F}=\frac{.00108}{1.022}=.00106$ P.U.
$Z_{\mathrm{total}}=\left(R_{F}+R_{\mathrm{sys}}\right)+j\left(X_{F}+X_{\mathrm{Sys}}\right)=.0485 P . U$.
$I_{\mathrm{sc}, B}=\frac{1.0}{.0485}=20.645 P . U$.
$I_{\mathrm{sc}, B}=20.645 * I_{\mathrm{ref}}=5594 A_{\mathrm{sym}}$

The available short circuit current at the remaining feeders was determined in same manner shown above. The results of thses calculations are shown in the following table.

Point A	
Base kVA	225
Voltage (Line to Line)	480
Rated Secondary Current	270.63294
$\mathbf{Z}_{\text {utility }}($ P.U $)$	0
$\mathbf{Z}_{\text {trans }}$	5.75%
$\mathbf{Z}_{\text {ut }}$	5.75%
$\mathbf{I}_{\text {trans }}$ (P.U.)	17.391304
$\mathbf{I}_{\text {trans }}($ Amps $)$	4706.6598
$\mathbf{I}_{\text {motor }}$	1082.5318
$\mathbf{I}_{\text {sc }}$	$\mathbf{5 7 8 9 . 1 9 1 6}$

Table 18: Short Circuit Calculations at A

	Point B	Point C	Point D	Point E	Point F	Point G
Previousl ${ }_{\text {Sc }}$	5789	5712	5712	5712	5484	1132
Rated Current (A)	270.6	270.6	270.6	270.6	83.3	83.3
Zreference	1.02353	1.02353	1.02353	1.02353	1.4	1.4
Previous Rated Current (PU)	21.39	21.10	21.10	21.10	65.85	13.60
Transformer Z(pu)	0	0	0	0	0.0575	0
Zs	0.0467	0.0474	0.0474	0.0474	N/A	0.0735
Rs	0.0113	0.0115	0.0115	0.0115	N/A	0.0178
Xs	0.0454	0.0460	0.0460	0.0460	N/A	0.0713
RI	0.063	0.49	0.1	0.49	0	0.78
XI	0.051	0.064	0.054	0.064	0	0.065
Length	10	20	10	10	0	30
RF(ohms)	0.00063	0.0098	0.001	0.0049	0	0.0234
XF(ohms)	0.00051	0.00128	0.00054	0.00064	0	0.00195
RF(pu)	0.000616	0.009575	0.000977	0.004787	0	0.016238
XF(pu)	0.000498	0.001251	0.000528	0.000625	0	0.001353
Rtotal(pu)	0.0119	0.0210	0.0124	0.0163	0.037307018	0.0340
Xtotal (pu)	0.0459	0.0472	0.0465	0.0466	0.063362054	0.0733
Ztotal (pu)	0.0474	0.0517	0.0481	0.0494	0.0735	0.0808
Isc (PU)	21.10	19.34	20.77	20.26	13.60	12.37
Isc (A)	5712	5235	5622	5484	1132	1030

Table 19: Short Circuit Calculations at points B-G.

The wire sizes were selected based on ampacity, short circuit current and voltage drop. Wires were selected to provide a voltage drop no greater than 3% for branch circuits and 2% for feeders. All wires are copper with THW insulation, and based on an ampacitiy of 75 C. The final wire selections are summarized in Table20, while the sizing criteria are detailed in Table 21. The asymmetrical short circuit current was obtained based on a K factor of 1.3 and a clearing time of 2 cycles. The methodology for the calculations is outlined below.

Demand load calculations

$$
\begin{gathered}
\text { Motors } D L=1.25 * \text { Largest }+1.0 * \text { Remaining } \\
\text { Lighting } D L=1.25 * \text { Connected Load } \\
\text { Power } D L=1.0 * \text { Connected Loads }
\end{gathered}
$$

Other Calculations

$$
\begin{gathered}
I_{C L}=\frac{P_{t}}{\sqrt{3} V_{\text {Line }}} \\
I_{\text {asym }}=K * I_{S C}
\end{gathered}
$$

	Min. Wire Sizes		
	Ampacity 1	I sc 2	Voltage Drop 3
Motor Sub Feeder	2/0 AWG	\#6 AWG	Any
Lighting Sub Feeder	\#8 AWG	\#6 AWG	Any
Power Sub Feeder, Primary	\#8AWG	\#6 AWG	Any
Power Sub, Secondary	\#8 AWG	\#8AWG	\#12 AWG
Main Secondary	250 MCM	\#6 AWG	Any
Lighting Branch Ckts	\#10 THW	\#10 THW	\#10 THW
Power Branch Ckts	\#12 THW	Any	\#12 THW

Table 20: Summary of the wire sizes selected (highlighted)

[^0]| | Calculations | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | P_{T} | PF | P_{R} | P_{x} | Ict | DL, kVA | Minimum Ampacity, A | Length, ft | 10^3 Amp*ft | Isc | lasym |
| Motor Sub Feeder | 126.26 | 0.85 | 107.10 | 66.87 | 151.87 | 126.26 | 156.30 | 10 | 1.52 | 5622 | 7308.63 |
| Lighting Sub Feeder | 21.352 | 0.98 | 20.92 | 4.25 | 25.68 | 26.69 | 32.10 | 20 | 0.51 | 5235 | 6805.12 |
| Power Sub Feeder, Primary | 45.4275 | 0.9 | 40.88 | 19.80 | 54.64 | 27.71375 | 33.33 | 10 | 0.55 | 5484 | 7128.75 |
| Power Sub, Secondary | 45.4275 | 0.9 | 40.88 | 19.80 | 126.09 | 27.71375 | 76.93 | 30 | 3.78 | 1132 | 1472.24 |
| Main Secondary | 193.04 | 0.87 | 168.91 | 90.92 | 232.19 | 208.38 | 250.64 | 5.00 | 1.16 | 5789.16 | 7525.91 |

Table 21: Ampacity Calculations Summary

References

1. Krarti, Moncef. "AREN 4570 - Electrical Systems for Buildings." AREN 4570 - Electrical Systems for Buildings. N.p., n.d. Web. 31 Mar. 2013.
2. Earley, Mark W., Jeffrey S. Sargent, Christopher D. Coache, and Richard J. Roux. National Electrical Code. Handbook. Quincy, MA: National Fire Protection Association, 2011. Print.
3. Hughes, S. David. Electrical Systems in Buildings. Boston: Delmar Pub., 1988. Print.

EO - Legend and Schedule
E1.1 - Radial Distribution One Line Diagram E1.2 - Lighting Panel One Line Diagram
E1.3 - Power Panel One Line Diagram
E2 - Riser Diagram
E3.1- First Floor Lighting Layout
E3.2 - Second Floor Lighting Layout
E3.3 - Third Floor Lighting Layout
E4.1 - First Floor Power Receptacle Layout
E4.2 - Second Floor Power Receptacle Layout
E4.3 - Third Floor Power Receptacle Layout
E5.1 - First Floor Motor / Electrical Equipment Layout
E5.2 - Second Floor Motor / Electrical Equipment Layout
E5.3 - Third Floor Motor / Electrical Equipment Layout
E6.1 - Lighting Panel Schedule
E6.2 - Power Panel Schedule
E7 - Unit Substation Layout
E8 - Motor Control Center Layout

Lighting Schedule							
Drawing Symbol	Description	Model \#	Manufacturer	Wattage	Voltage	Quantity	Notes
θ	Exterior Wall Lighting	$\begin{gathered} \text { 697-WP-MH/1/100-27 } \\ 7 \mathrm{~V}-\mathrm{BK}-\mathrm{C} \end{gathered}$	Shaper	100	277	10	Exterior Lighting near entrances
\triangle	Troffers	$\begin{array}{\|c} \hline \text { 2-VRM-S-2-54T5-PA3 } \\ 75-277-L E 0 C 8-G L \end{array}$	ISO	122	277	96	All Troffers per floor are wired together and go to a single fuse on the second floor
\otimes	Down Lights	$\begin{gathered} \text { PD8H142-E-82H-1G- } \\ \text { C-HB128APK } \end{gathered}$	Halo	45	277	113	Downlights for private offices/ conference rooms and hallways.
\otimes	Emergency Down Lights	$\begin{gathered} \text { PD8H142-REM-82H-1 } \\ \text { G-C-HB128APK } \end{gathered}$	Halo	45	277	113	Emergency Down lights must include battery backup.
\square	Exit Signs	ECHX-2-ST-AR-WH	Sure-Lites	4.50	277	15	Exit Signs Should be ordered with the arrows facing the proper direction.
∞	Occupancy Sensors	VAC-DT-2000-R	Greengate	. 75	277	32	Occupancy Sensors in nearly all spaces help improve energy consumption.

| Motor Schedule | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drawing Symbol | Motor \# | Description | Manufacturer | HP | \# of Motors | PF | Efficiency | Control | Notes |
| | M1 | AHU Supply Fan | Moncef Motors | 25 | 1 | 0.9 | 0.92 | RVNR | Located in utility room on 3rd floor |
| | M2 | AHU Return Fan | Moncef Motors | 15 | 1 | 0.9 | 0.92 | RVNR | Located in utility room on 3rd floor |
| | M3 | CHW Pump | Moncef Motors | 20 | 1 | 0.9 | 0.92 | RVNR | Located in utility room on 2nd floor |
| | M4 | Elevator | Moncef Motors | 20 | 1 | 0.9 | 0.9 | RVR | Located below elevator on1st floor |
| | M5 | AHU Exhaust | Moncef Motors | 10 | 1 | 0.9 | 0.92 | RVNR | Located in utility room on 3rd floor |
| | M6 | HW Pump | Moncef Motors | 10 | 1 | 0.9 | 0.92 | RVNR | Located in utility room on 2nd floor |
| | M7-M12 | Exhaust Fans (6
 Restrooms) | Moncef Motors | 1 | 6 | 0.85 | 0.95 | FVNR | Located in bathrooms on each floor |

Legend	
Symbol	Description
\square	Troffers
∞	Occupancy Sensor
\otimes	8" Down Light
\otimes	8" Emergency Down Light
\bigcirc	Circuit Breaker
-	Switch
亿	Over Current Protection
\square	Fuse
-11	Motor Controller
mm	Transformer
\Longrightarrow	Lighting Panel Board
\square	Power Panel Board
0	Toilet
θ	Urinal
\sim	Light Switch
\bigcirc	Wall Outlet
(0)	Bathroom Fan
\bigcirc	AHU Fan
\bigcirc	Water Pump
$\vec{\square}$	Chiller
1	Door
歌	Ground Fault Circuit Interrupter
\square	Exit Sign
\cdots	Wiring
Q_{0}	Sink
$4-\cdots$	Home Run
θ	Motor Control Center
\square	Boiler
H	Grounding
Q	Exterior Wall Lighting

Radial Dictrihution Propus Ena

Radial Distribution One-Line Diagram

PRODUCED BY AN AUTODESK EDUGATIONAL PRODUCT
Lighting Panel One-Line Diagram
Branch Descriptions
L1: First Floor Troffers
L2: First Floor Down Lights
L3: Second Floor Troffers
L4: Second Floor Down Lights
L5: Third Floor Troffers
L6: Third Floor Down Lights

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Branch Descriptions First Floor
\#1 Conference Room 1A
\#2 Conference Room 1B
\#3 Open Office Area 1A
\#4 Open Office Area 1A / Hallway 1A
\#5 Hallway 1A / Lobby
\#6 Hallway 1B / Lobby
\#7 Hallway 1C / Lobby
\#8 Cafeteria
\#9 Refrigerator 1
\#10 Cafeteria Small Appliance Outlet
\#11Restrooms 1 / Storage Room 1
\#12 Mechanical and Electrical Room
Second Floor
\#13 Conference Room 2
\#14 Private Office 2A
\#15 Private Office 2B
\#16 Open Office 2
\#17 Stairwell B
\#18 Private Office 2D
\#19 Restrooms 2 / Storage Room $2-1$ "C-4\#8 THW (cu)
\#20 Private Office 2C
\#21 Refrigerator 2
\#22 Small Appliance Second Floor
\#23 Utility Room 2
\#24 Stairwell A
\#25 Hallway 2A
Third Floor
\#26 Conference Room 3
\#27 Private Office 3A
\#28 Private Office 3B
\#29 Open Office 3
\#30 Private Office 3D
\#31 Restrooms 3 / Storage Room 3
\#32 Private Office 3C
\#33 Refrigerator 3
\#34 Small Appliance Third Floor
\#35 Utility Room 3
\#36 Hallway 3A

Power Panel One-Line Diagram

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
Riser Diagram

First Fooc lior Lighting Layout

Second Floor Lighting Layout

Third Flouor Lioar Ligting Layout

First Floor Powwer Receptacle Layout

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
Second Floor Power Receptacle Layout

E4.2

Third Floor Power Receptacle Layout

E4.3

First Floor Motor/

Second Floor Motor / Electrical Equipment Layout

Lכnaoyd רVNOILVOnag ysョaO

Third Floor Motor / Electrical Equipment Layout

Lכnaoyd רVNOILVOnag ysョaO

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
 Lighting Panel Schedule

LOAD DESCRIPTION	A (Amps)	B (Amps)	C (Amps)	CB	Y_{1}^{A}			CB	A (Amps)	B (Amps)	C (Amps)	LOAD DESCRIPTION
L1	20.35			30A/1P				30A/1P	12.87			L4
L2		12.04		30A/1P		56		30A/1P		19.11		L5
L3			19.11	30A/1P				30A/1P			12.87	L6

LOAD TOTALS (Amps)	
LOAD A, T	33.22
LOAD B, T	31.15
LOAD C, T	31.98

$\%$ UNBALANCED	
$\% \mathrm{AB}=$	6.63
$\% \mathrm{BC}=$	2.60
$\% \mathrm{CA}=$	3.71

Power Panel Schedule

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Unit Substation Layout

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

The 697-WP features a compact cast Aluminum Hood Downlight.

Exterior Entrance Lighting

SPECIFICATION FEATURES

Material

Cast aluminum construction with clear tempered refractive glass for MH incandescent or $1 / 8^{\prime \prime}$ white acrylic for incandescent and CFL lamps. Optional clear tempered glass for full cut-off.

Finish

PremiumTGIC polyester powder coat paint, 2.5 mil nominal thickness for superior protection against fade and wear. Standard: Black (BK) or White (WH). Premium: Aluminum Paint (ALP), Bronze Metallic Paint (BM), Gold Metallic Paint (GM), Dark Platinum Paint (DP), Graphite Metallic Paint (GRM), Grey Paint (GY) or Custom Color (CC).

Optics

Refer to www.shaperlighting.com for complete photometrics.

Ballast

Integral electronic HPF, multi-volt 120/277V (347V Canada), thermally protected with end-of-life circuitry to accommodate the specified lamp wattage. Metal halide ballasts are electronic HPF, multi-volt 120/277V for the specified lamp wattage. 347 V ballasts for metal halide - Contact factory.

Lamp
One (1) 26W, 32W (GX24q-3) or 42W (GX24q-4) 4-pin triple tube CFL lamp or one (1) 50W, 70W or 100W ED-17 metal halide lamp or one (1) 100W A-19 lamp.
CFL socket injection molded plastic. INC socket fired ceramic rated for $660 \mathrm{~W}-250 \mathrm{~V}$. Metal halide socket ceramic pulse-rated, 4 KV . Lamps furnished by others.

Installation
Supplied with a mounting back for a standard 4" J-box or stucco ring. Optional rear (through wall) feed conduit mounting.

Options

Rear (through wall) Feed Conduit Mounting (C), ClearTempered Glass Lense - for full cut-off Quartz (TGL) [Dark Sky Compliant], Restrike (MH only) (QR).

Labels
U.L. and C.U.L. listed for wet location.

Modifications
Shaper's skilled craftspeople with their depth of experience offer the designer the flexibility to modify standard exterior wall luminaires for project specific solutions. Contact the factory regarding scale options, unique finishes, mounting, additional materials/colors, or decorative detailing.

697-WP SERIES

Exterior Wall Luminaire Hood Downlight

ARRA

Shaper Lighting certifies that its products satisfy the requirements of Section 1605 of the American Recovery and Reinvestment Act (also known as the ARRA Buy American provision).

[^1]
DESCRIPTION

The VRM combines a low-profile, surface modular design with the latest in energy-efficient technology.The dihedral recessed top design allows for cooler fixture operation. Other features include a die-formed housing, surface or stem mounting (single or continuous row), full seam-welded corners and a broad selection of attractive door frames. The durable, versatileVRM is perfect for use in commerical spaces, schools, hospitals, correctional or industrial facilities and high volume public access areas.

Catalog \#		Type
Project		
Comments		
Prepared by		

SPECIFICATION FEATURES

Construction

Housing is die-formed, code gauge, prime cold-rolled steel. Smooth sides permit flush joint for continuous row mounting. Full seam-welded corners. Dihedral recessed top design insures cooler ballast operation. Die-formed captive lampholder bracket fully encloses wiring permitting easy lampholder replacement. Ballast covers easily removed without tools.

Finish

Painted after fabrication. Electrostatically-applied baked white polyester powder enamel finish. Multistage cleaning cycle, iron phosphate coating with rust inhibitor. Conveyorized application and baking timing accurately controlled at an elevated temperature.

Hinging/Latching Positive cam action steel latches with baked white enamel finish. Safety lockT-hinges allow hinging and latching either side.

Frame/Shielding
Die-formed, heavy gauge, flat steel door with reinforced mitered corners and baked white enamel finish. Positive light seals. Frame and lens are secured to housing with 4 or 6T20 stainless steel TORX ${ }^{\circ}$ screws.

Electrical*
Ballasts are CBM/ETL Class "P" and are positively secured by mounting bolts. Pressure lock lampholders.

Labels
UL/cUL listed for damp locations.

2VRM

MOUNTING DATA

LAMP CONFIGURATIONS

TORX is a registered trademark of Camcar Division of Textron Inc.

ENERGY DATA
InputWatts:
EB Ballast \& STD Lamps
232 (61)
432 (122)
ES Ballast \& STD Lamps
232 (71)
432 (142)
Luminaire Efficacy Rating
LER $=\mathrm{FL}-71$
Catalog Number:
Yearly Cost of 1000 lumens:
3000 hrs at $.08 \mathrm{KWH}=\$ 3.38$

* Reference the lamp/ballast data in the Technical Section for specific lamp/ballast requirements

ORDERING INFORMATION

PHOTOMETRICS

Candlepower Distribution		Candlepower			Typical VCP Percentages					
	Test No. M-2071 2VRM-340-ACTF140 Lamp=F40T12/CW Lumens=3150	Deg.	\perp	II	Room Size (in Feet)	$\begin{aligned} & \text { Height Along I } \\ & 8^{\prime} 6^{\prime \prime} \quad 10^{\prime \prime} 0^{\prime \prime} \end{aligned}$		$\begin{aligned} & \text { Height Across } \perp 1 \\ & 8^{\prime} 6^{\prime \prime} \quad 10^{\prime \prime} 0 \end{aligned}$		
		0	2659	2659	$\frac{(\text { in Feet) }}{20 \times 20}$	$\begin{array}{r}86 \\ \hline 68\end{array}$	71	86 67	70	
600		5	2650	2663	30×30	60	65	60	64	
		25	2373	2587	30×60	52	56	51	55	
1200	Spacing Criteria	35	2056	2391	60×30	62	66	61	66	
	$\perp=1.4 \quad \text { II=1.2 }$	45	1553	1839	60×60	52	55	51	54	
1800		55	986	1127						
		65	541	526						
		75	253	259						
2400		85	105	111						
		90	0	0						

Zonal Lumen Summary			
Zone	Lumens	\%Lamp	\%Luminaire
$0-30$	2136	22.6	32.2
$0-40$	3540	37.5	53.3
$0-60$	5746	61.1	56.9
$0-90$	6641	70.3	100.0
$90-180$	0	0.0	0.0
$0-180$	6641	70.3	100.0

rc	80\%				70\%			50\%		30\%		10\%		0\%
rw	70	50	30	10	50	30	10	50	10	50	10	50	10	0
RCR														
0	84	84	84	84	82	82	82	78	78	75	75	72	72	70
1	77	74	71	69	73	70	68	70	66	67	64	64	62	60
2	71	66	61	58	64	60	57	62	56	60	54	58	53	52
3	65	58	53	49	57	52	49	55	48	53	47	52	46	45
4	60	52	47	42	51	46	42	50	41	48	41	47	40	39
5	56	47	41	37	46	41	37	45	36	44	36	42	36	34
6	51	43	37	32	42	36	32	41	32	40	32	39	32	30
7	48	39	33	29	38	33	29	37	29	36	28	35	28	27
8	45	36	30	26	35	30	26	34	26	33	26	32	25	24
9	42	33	27	23	32	27	23	31	23	31	23	30	23	22
10	39	30	25	21	30	25	21	29	21	28	21	28	21	20
rc=Ceiling reflectance, rw=W all reflectance, $\mathrm{RCR}=$ Room cavity ratio														

Catalog \#		Type
Project		
Comments		Date
Prepared by		

SPECIFICATION FEAT URES

MECHANICA L

Frame

Boat shaped galvanized steel frame with $1 / 2^{\prime \prime}$ plaster lip accommodates ceilings up to 2" thick. May be used for new construction or remodeling installations. Provided with (2) remodel clips to secure frame when installed from below the ceiling.

Mounting Brackets Bar hanger receivers adjusts 2" vertically from above the ceiling or thru the aperture. Use with No Fuss ${ }^{\text {TM }}$ bar hangers or with 1/2" EMT. Removable to facilitate installation from below the ceiling.
No Fuss ${ }^{\text {TM }}$ Bar Hangers Pre-installed and centered bar hanger locks to tee grid with a screwdriver or pliers. Centering marks on the bar hanger mechanism allows consistent positioning of fixtures.

OPTICA L

Reflector
One piece aluminum reflector secures lens in place with integrated spring clips for a visually comfortable optic and allows for tool-less lens exchange from below the ceiling. Available with clear, diffuse, prismatic, fresnel or drop opal glass lens. Optional cross blade louver provides sharper cutoff to lamp. Self flanged standard.

- Specular Reflectors - Polished flange standard with white painted flange option.
- Baffles andWhite Reflector White painted flange standard.

Trim Retention Reflector is retained with two torsion springs and held tightly to the finished ceiling surface.

ELECT RICA L
Junction Box
(6) $1 / 2^{\text {" }}$ and (2) $3 / 4^{\prime \prime}$ trade size pry outs positioned to allow straight conduit runs. Listed for (12) \#12 AWG (six in, six out) $90^{\circ} \mathrm{C}$ conductors and feed thru branch wiring.
Lamp Socket
4-pin G24q base accepts (1) 26W DTT or 26/32/42W TTT lamp.

Socket Housing Galvanized steel socket housing attached securely to reflector with captive thumbscrew. Vents provide effective lamp thermal management.
Control Gear
Universal 120V-277V UNV or 347 V input electronic ballast for 26/32/42W compact fluorescent lamp.

Emergency Battery Pack REM - Remote emergency test switch. Housing includes $120 \mathrm{~V} / 277 \mathrm{~V}, 60 \mathrm{~Hz}$ dual-tap battery pack provides 90 minutes of emergency illumination. Long life maintenance free sealed nickel cadmium batteries recharge fully in 24 hours. REM configuration includes prewired and attached remote test switch plate and indicator light. REM option is the standard emergency configuration, and is compatible with all standard reflector options, ordered separately.

IEM - Integral emergency test switch. Housing includes $120 \mathrm{~V} / 277 \mathrm{~V}, 60 \mathrm{~Hz}$ dual-tap battery pack provides 90 minutes of emergency illumination. Long life maintenance free sealed nickel cadmium batteries recharge fully in 24 hours. IEM configuration includes a prewired integral
emergency test switch and indicator light that are both accessible inside the reflector. The IEM option requires "EM" designated reflectors only, ordered separately.
Emergency Battery Pack - Average Lamp Lumen Ratings
REM option: 26W 425Im, 32W $600 \mathrm{~lm}, 42 \mathrm{~W} 750 \mathrm{~lm}$

IEM option: 26W 810lm, 32W
910lm, 42W 1040Im
(Note: average lamp lumens are based upon REM and IEM manufacturer ratings. Delivered lumens depend upon trim; refer to trim photometry to factor delivered lumens).
Code Compliance

- Thermally protected and cULus listed for wet locations.
- IP44 rated for lens trims
- NFPA Life Safety (Emergency Battery Pack)
- EMI/RFI per FCCTitle 47 CFR, Part 18, non consumer limits.
- Peel down wattage label from 42 W to 32 W and 26 W . Allows de-rating to set max. relamp wattage per project specifications (multi-wattage housings only).
- DR - De-rated label housings are wattage specific for $26 / 32 \mathrm{~W}$ or 26W.
- High efficacy luminaire may be used to meet IECC, ASHRAE, and Title 24 commercial standards.

ENERGY DATA

PD8H142E, PD8CPH142E	
Min. Starting Temp -5 ${ }^{\circ} \mathrm{F} /-20^{\circ} \mathrm{C}$	Sound Rating Class A
EMI/RFI Emissions FCC 47CFR Part 18 Non-Consumer Limits	
Input Frequency $50 / 60 \mathrm{~Hz}$	Power Factor > 0.98
THD < 10\%	Input Voltage 120V-277V $\pm 10 \%$
Crest factor < 1.7	
Operating Frequency > 40kHz	UL Listed Class P, Type 1 Outdoor, CSA or C/UL Certified
CFQ26W/G24Q	Input Power 28W
	Input Current 0.50A @ 120V
	Input Current 0.22A @ 277V
	Ballast factor 1.00
CFTR26W/GX24Q	Input Power 28W
	Input Current 0.50A @ 120V
	Input Current 0.22A @ 277V
	Ballast factor 1.00
CFTR32W/GX24Q	Input Power 35W
	Input Current 0.50A @ 120V
	Input Current 0.22A @ 277V
	Ballast factor . 98
CFTR42W/GX24Q	Input Power 45W
	Input Current 0.50A @ 120V
	Input Current 0.22A @ 277V
	Ballast factor . 96

PD8H1423E	
Min. Starting Temp $0^{\circ} \mathrm{F} /-18^{\circ} \mathrm{C}$	Sound Rating Class A
EMI/RFI Emissions FCC 47CFR Part 18 Non-Consumer Limits	
Input Frequency 60 Hz	Power Factor > 0.98
THD < 10\%	Input Voltage 347VAC $\pm 10 \%$
Operating Frequency $50-60 \mathrm{kHz}$	cULus Listed Class P, Type 1 Outdoor, Type CC
CFQ26W/G24Q	Input Power 31W
	Input Current 0.09A @ 347V
	Ballast factor 1.02
	Crest factor < 1.6
CFTR26W/GX24Q	Input Power 31W
	Input Current 0.09A @ 347V
	Ballast factor 1.02
	Crest factor < 1.6
CFTR32W/GX24Q	Input Power 36W
	Input Current 0.11A @ 347V
	Ballast factor 0.98
	Crest factor < 1.5
CFTR42W/GX24Q	Input Power 50W
	Input Current 0.15A @ 347V
	Ballast factor 1.00
	Crest factor < 1.5

DIMENSIONS

ORDERING INFORMATION

SAMPLE NUMBER: PD8H142E 82H1GC
Order housing, reflector and lamp separately for a complete luminaire.

PHOTOMETRY

Luminance	
(Average Candela/M ${ }^{\mathbf{}}$)	
Degree	Avg. ${ }^{\circ}$ Luminance
45	11744
55	6285
65	1818
75	63
85	0

Cone of Light Footcandles			
Distance to Illuminated Plane	Initial Nadir Footcandles	Beam (ft.)	
		\mathbf{L} Length	\mathbf{W} Width
5.5^{\prime}	26	6.5	7.1
7^{\prime}	16	8.3	9
8^{\prime}	12	9.5	10.3
9^{\prime}	10	10.6	11.6
10^{\prime}	8	11.8	12.9
12^{\prime}	5	14.2	15.5
14^{\prime}	4	16.5	18

Beam diameter is to 50% of maximum footcandles, rounded to the nearest half-foot. Footcandle values are initial, apply appropriate light loss factors where necessary.

Zonal Lumen Summary			
Zone	Lumens	\% Lamp	\% Fixture
$0-30$	640.21	26.70	44.20
$0-40$	990.80	41.30	68.40
$0-60$	1398.25	58.30	96.60
$0-90$	1447.59	60.30	100.00

The ECHX Series Surface and recessed mount Edge-lit Exits, provide an attractive yet easy to install universal edge-lit exit sign. The crystal clear wedge shape lens panel with white background standard provides excellent light distribution, exit visibility and easy installation. Long life, energy efficient LED lamps reduce energy costs and eliminate routine lamp maintenance. Durable extruded aluminum construction, attractive styling and high efficiency illumination make this series compatible in commercial, institutional and multi-housing applications.

Catalog \#		Type
Project		
Comments		Date
Prepared by		

SPECIFICATION FEATURES

Electrical

- Dual Voltage Input

120/277 VAC, 60 Hz

- Line-latching
- Solid-state Voltage Limited Charger
- Solid-state Switching
- Brownout Circuit
- Test Switch / Power Indicator Light

Lens

- Injection molded, UV stabilized high impact, silk screened acrylic panels
- Bright red exit letter colors
- Panels customized with full stroke arrows for selected directional indicators
- White insert background included with single or double face exit panels
- Edge reflector for optimized efficiency and visibility

Battery

- Sealed Nickel Cadmium.
- Maintenance-Free, Long-Life
- Full Recharge Time, 24 hrs. (Max.)

Housing Construction

- Anodized extruded aluminum housing
Designer white textured finish available
- Components are of snap-fit construction to facilitate easy installation
- All components including battery and electronics are located inside the exit housing (surface) or the back (recessed).
- Die cast aluminum canopy with mounting screws included with all surface exits
- Surface mount exit can be universally mounted, ceiling, wall, or end, with Tri-Mount ${ }^{\text {TM }}$ System
- Universal J-box mounting plate on surface mount exit
- Recessed Mount Unit can be installed in dry wall or drop thru ceilings

Code Compliance

- UL 924 Listed
- Life Safety NFPA 101
- NEC/OSHA
- Most State and Local Codes
- City of Chicago fire code
- Chicago Plenum Approved

Warranty

- Exit: 1-Year
- Battery: 15-year pro-rated (Nickel Cadmium)

Lamp Data

- AC LED: Long life LED lamps provide uniform diffused illumination
- DC: LED DC lamps

Surface Mount

OR DERIN G INFOR MATION

HOUSING - SAMPLE NUMBER:	ECHX72SARLWH	
Family	LED	Mounting / Trim Options

TRIM - SAMPLE NUMBER: ECHX72SARLWH

Family	Face Options	Mounting Option	Arrow Options	Trim Finish	Stairs Option
$\begin{aligned} \text { ECHX }= & \text { Chicago } \\ & \text { Edge-Lit Exit } \\ & \text { Series } \end{aligned}$	$\begin{aligned} & 1=\text { Single } \\ & 2=\text { Double } \end{aligned}$	$\begin{aligned} & \mathrm{ST}=\text { Surface } \\ & \text { RT }=\text { Recessed } \end{aligned}$	[Blank] =No Arrow AR =Arrow Right (Single Face only) AL =Arrow Left (Single Face only) DA = Double Arrow ARL =Arrow Right/Left (Double Face only)	[Blank] =Brushed Aluminum WH =White	[Blank] =Exit Sign -Stair =Stair Sign (include dash)

TITALLY PREDICTABLE
 RELAEMLITY

ENER GYD ATA
Maximum power consumption
under all c harge conditions:

LED Exits - Red
Input P ower:
$120 \mathrm{~V}=4.5 \mathrm{~W}$
$277 \mathrm{~V}=4.9 \mathrm{~W}$
Input Current (Max.)
$120 \mathrm{~V}=0.04 \mathrm{~A}$
$277 \mathrm{~V}=0.02 \mathrm{~A}$

Lamps

The ECHX Series Exits use energy efficient, long-life LEDs to provide uniform diffuse illumination of the exit face. These white LEDs require no maintenance. The low operating costs and zero maintenance requirement makes LED lamps the wisest choice for exit signs today. Emergency illumination is provided by LED lamps.

Housing Construction

Rugged, durable, anodized extruded aluminum materials are used in the ECHX Series Exits. All structural components are designed with reinforcing ribs to add additional rigidity and to maximize structural integrity. These materials are impact and scratch-resistant. All components are designed to be of snapfit construction to facilitate easy installation. ECHX Series surface mount exits can be wall-, ceiling- or end-mounted. A Die-Cast Aluminum mounting canopy with installation screws is included. Recessed mount exits can be installed in drywall or drop-thru ceilings.

Lens

Trim panels for the ECHX Series Edgelit Exits are injection-molded from impact-resistant clear acrylic. Silk screened red letters, with white background insert is standard with all panels. Panels are customized with full stroke arrows for selected directional indicators. The edge reflector further enhances visibility.

Line-Latched (Self-Powered Only) Sure-Lites' line-latched electronic circuitry makes installation easy and economical. A labor efficient AC activated load switch prevents the lamps from turning on during installation to a non-energized AC circuit. Line-latching eliminates the need for a contractor's return to a job site to connect the batteries when the building's main power is turned on.

Solid-State Charger (Self-Powered Only) Supplied with a 120/277 VAC, voltage regulated solid-state charger, the battery is recharged immediately upon restoration of AC current after a power failure. The charge circuit reacts to the condition of the battery in order to maintain peak battery capacity and maximize battery life. Solid-state construction recharges the battery following a power failure in accordance with UL 924.

Brownout Circuit (Self-Powered Only)

The brownout circuit on Sure-Lites' exits monitors the flow of AC current to the exit and activates the emergency lighting system when a predetermined reduction of AC power occurs. This dip in voltage will cause most ballasted fixtures to extinguish causing loss of normal lighting even though a total power failure has not occurred.

Solid-State Transfer
(Self-Powered Only)
The ECHX Series Exit incorporates solidstate switching which eliminates corroded and pitted contacts or mechanical failures associated with relays. The switching circuit is designed to detect a loss of AC voltage and automatically energizes the lamps using DC power. Upon restoration of AC power, the DC power will be disconnected and the charger will automatically recharge the battery.

Test Switch/Power Indicator Light (Self-Powered Only)
A test switch located on the side of the exit (surface) or on the trim plate (recessed) permits the activation of the emergency circuit for a complete operational systems check. The Power Indicator Light provides visual assurance that the AC power is on.

Sealed Nickel Cadmium Battery

 (Self-Powered Only)Sure-Lites sealed nickel cadmium batteries are maintenance-free with a life expectancy of 15 years. The sealed rechargeable nickel cadmium battery offers high discharge rates and stable performance over a wide range of temperatures. The specially designed resealable vent automatically controls cell pressure, assuring safety and reliability. This battery is best suited for harsh ambient temperatures because the electrolyte is not active in the electrochemical process.

Warranty

All Sure-Lites' products are backed by a firm one-year warranty against defects in material and workmanship. Maintenancefree, long-life, sealed nickel cadmium batteries carry a fifteen-year pro-rated warranty.

VAC-DT,

MicroSet Dual Tech Vacancy Ceiling Sensor Low Voltage
 Self-Adjusting

- MicroSet self-adjusting Time Delay and sensitivity

$\substack{\text { Catalog \# } \\ \text { Project } \\ \text { Comments } \\ \\ \hline \text { Prepared by } \\ \\ \hline}$	Dype	

Overview

- Optional built-in light level sensor
- Optional BAS/HVAC isolated relay
- Products tested to NEMA WD 7-2011 Occupancy Motion Sensors Standard
- Requires Manual ON for activation

Specifications:

Technology: Passive Infrared (PIR) and Ultrasonic (US) Power Requirements:
Input:

- 10-30 VDC from Greengate S witchpack or Greengate system.
- Maximum current needed is 25 mA per sensor. Output:
- Open collector output to switch up to ten Greengate S witchpacks.
- BAS with Isolated Form C Relay in (-R) model.
- Isolated Form C Relay Ratings: 1A 30 VDC/VAC.

Time Delays: Self-adjustable, 15 seconds/test (10 min .
Auto), or Selectable 5, 15, 30 minutes, or Zero Time Delay
C overage: 500, 1000, and 2000 sq. ft.
Light Level Sensing (-R models): 0 to 300 footcandles
Operating Environment:

- Temperature: $32^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$
- Relative humidity: 20% to 90%, non-condensing
- For indoor use only

Housing: Durable, injection molded housing.
Polycarbonate resin complies with UL 94 V 0 .
Size: $4.5^{\prime \prime} \mathrm{H} \times 1.42^{\prime \prime} \mathrm{W}(114.3 \mathrm{~mm} \times 36.068 \mathrm{~mm})$
LED lamp: Green LED for Ultrasonic Red LED for Passive Infrared
Warranty: Five year

FCC Compliant

cULus Listed
RoHS Compliant c(UL) us RoHS
The Dual Technology sensor's combination of Ultrasonic and Passive Infrared technologies offers the most complete sensing equipment available today. This pairing helps eliminate false deactivations for additional energy savings. The VAC-DT sensors are also equipped with MicroS et self-adjusting technology which provides an adaptive and airflow tolerant technology, making them ideal for spaces which have increased airflow due to higher occupant levels. MicroS et self-adjusting Dual Technology sensors drastically simplify and reduce a contractor's installation and adjustment time period.

Technology

The MicroSet self-adjusting technology continuously monitors multiple subfrequencies in the event that if a continuous Doppler shift occurs, such as those created by airflow from an air duct, the sensor will identify the noise as continuous and then block it out of view at a select sub-frequency. It will continue to monitor other sub-frequencies for human motion. This avoids false activation, while still maintaining the high level of sensitivity that is necessary for sensing minor motion in a changing environment. Separate concurrent time delays for both Passive Infrared and Ultrasonic technologies avoid false activations or deactivations. The lights are turned ON by activating a momentary switch (model \# GMDS-*) that is connected to the sensor. When enabled, the daylighting feature (-R models only) prevents lights from turning $O N$ when the room is adequately illuminated by natural light.

Applications

class rooms		common areas		other indoor office spaces
conference rooms office spaces		computer rooms break rooms		
Ordering				
Catalog \#	Recommend Room Size	Field of View	Frequency	Features
VAC-DT-2000-R	2,000 sq.ft.	Two Way (360 ${ }^{\circ}$)	32 kHz	w/BAS Relay \& Daylight Sensor
VAC-DT-1000-R	1,000 sq.ft.	Two Way (360°)	32 kHz	w/BAS Relay \& Daylight Sensor
VAC-DT-0501-R	500 sq.ft.	One Way (180°)	40 kHz	w/BAS Relay \& Daylight Sensor

Coverage

Controls

DIP Switch Legend

30hX Evergreens

Indpor Lisueq Sorfow Chilless
7015265% arinus fons
Jomoth-Conseniantiai
30FOKC - Water-costed

30n0xC. 65 He Wanar-Coolesd

sute	Capsci) (Iots)	$\begin{gathered} \text { BPI } \\ \text { aWiTloat } \end{gathered}$	Dinnensions (if)			Operatins Weight (bs)
			Lengt	Wein	Helght	
076	74	51	5.5	23	54	5705
086	82	54	8.5	28	54	5723
056	虽	± 3	8.5	23	54	5455
106	103	55	8.5	28	5.6	6177
115	112	\$3	85	2\%	54	6415
126	121	53	11.1	28	54	6465
170	134	\$5	11.7	211	54	6501
146	143	55	11.1	28	54	5711
151	155	50	11.1	29	58	7452
171	164	36	11.1	29	58	7660
t46	175	49	11.1	2.8	58	7354
206	211	53	11.1	3	6.2	10561
246	265	34	12.4	3	62	10050
251	255	54	12.4	3	62	+0992
271	205	34	12.4	3	62	11029

[^2]
[^0]: 1. NFPA 70-87
 2. NEC, CSA Type TW75
 3. Courtesy of Canada cable. See Voltage Drop Analysis Section.
[^1]: $\underset{\text { SKY }}{\text { DARK }}$
 SKY
 Shaper offers a selection of exterior lumi naires that are "Dark Sky Compliant" The IESNA (Illuminating Engineering Society of North America) defines Full Cut-Off as fixtures with light distributions of 0% candela at 0 .Ful Cut-O Iumina ires carry he endorsement (IDA) for their effectiveness in limiting th detrimental effects of sky glow, also referred to as "Light Pollution" Many exterior luminaires offer a clear, tempered glass option that meets the IES criteria for glass option that meets the IES criteria for Full Cut-Off.

[^2]: Contact pour incal Camer representative for condenseriess natiops

